Chapter 1: INTRODUCTION TO AI

1-1 to 1-33

Syllabus: Introduction: Introduction to AI, AI techniques, Problem Formulation. Intelligent Agents: Structure of Intelligent agents, Types of Agents, Agent Environments PEAS representation for an Agent.

Self-Learning Topics : Identify application areas of AI.

1.1	Introduc	tion to Artificial Intelligence	1-1
1.2	Foundati	ions of AI	1-1
	1.2.1	Acting Humanly : The Turing Test Approach	1-1
	1.2.2	Thinking Humanly : The Cognitive Modelling Approach	1-3
	1.2.3	Thinking Rationally : The "Laws of Thought" Approach	1-3
	1.2.4	Acting Rationally : The Rational Agent Approach	1-3
1.3	Categoriz	zation of Intelligent Systems	1-4
1.4	Compone	ents of AI	1-4
	1.4.1	Computational Intelligence Vs Artificial Intelligence	1-6
1.5	Artificial	Intelligence Techniques	1-6
1.6	Problem	Formulation	1-10
	1.6.1	Components of Problems Formulation	1-10
	1.6.2	Example of 8-Puzzle Problem	1-11
	1.6.3	Example of Missionaries and Cannibals Problem	1-11
	1.6.4	Vacuum-Cleaner Problem	1-12
	1.6.5	Example of Real Time Problems	1-13
1.7	Intelligent Agents		1-13
	1.7.1	What is an Agent?	1-13
	1.7.2	Definitions of Agent	1-15
	1.7.3	Intelligent Agent	1-16
	1.7.3(A)	Structure of Intelligent Agents	1-16
1.8	Rational .	Agent	1-17
1.9	Environn	nents Types and PEAS Properties of Agent	1-19
	1.9.1	Environments Types	1-19
	1.9.2	PEAS Properties of Agent	1-22
1.10	Types of Agents		1-24
	1.10.1	Simple Reflex Agents	1-24
	1.10.2	Model-based Reflex Agents	1-26
	1.10.3	Goal-based Agents	1-27
	1.10.4	Utility-Based Agents	1-27
	1.10.5	Learning Agents	1-28

1.11	Self-Learn	ning Topics : Identify application areas of AI	.1-29
	1.11.1	Application Areas of Artificial Intelligence	. 1-29
	1.11.2	Sub Areas/ Domains of Artificial Intelligence	. 1-31
	1.11.3	Current Trends in Artificial Intelligence	.1-31

Chapter 2: SEARCH TECHNIQUES

2-1 to 2-64

Syllabus: Uninformed Search Techniques: Uniform cost search, Depth Limited Search, Iterative Deepening, Bidirectional search. Informed Search Methods: Heuristic functions, Best First Search, A*, Hill Climbing, Simulated Annealing. Constraint Satisfaction Problem Solving: Crypto-Arithmetic Problem, Water Jug, Graph Coloring. Adversarial Search: Game Playing, Min-Max Search, Alpha Beta Pruning. Comparing Different Techniques.

Self-Learning Topics: IDA*, SMA*.

2.1	Measur	ring Performance of Problem Solving Algorithm / Agent	2-1
2.2	Node R	Representation in Search Tree	2-2
2.3	Uninfo	rmed Search	2-2
2.4	Depth I	First Search (DFS)	2-2
	2.4.1	Concept	2-3
	2.4.2	Implementation	2-3
	2.4.3	Algorithm	2-3
	2.4.4	Performance Evaluation	2-4
2.5	Breadtl	h First Search (BFS)	2-5
	2.5.1	Concept	2-5
	2.5.2	Process	2-5
	2.5.3	Implementation	2-5
	2.5.4	Algorithm	2-5
	2.5.5	Performance Evaluation	2-5
2.6	Uniforr	m Cost Search (UCS)	2-6
	2.6.1	Concept	2-6
	2.6.2	Implementation	2-6
	2.6.3	Algorithm	2-6
	2.6.4	Performance Evaluation	2-6
2.7	Depth I	Limited Search (DLS)	2-7
	2.7.1	Concept	2-7
	2.7.2	Process	2-7
	2.7.3	Implementation	2-7
	2.7.4	Algorithm	2-7
	2.7.5	Pseudo Code	2-8
	2.7.6	Performance Evaluation	2-8

2.8	Iterative	e Deepening DFS (IDDFS)	2-8
	2.8.1	Concept	2-8
	2.8.2	Process	2-9
	2.8.3	Implementation	2-10
	2.8.4	Algorithm	2-10
	2.8.5	Pseudo Code	2-10
	2.8.6	Performance Evaluation	2-10
2.9	Bidirect	ional Search	2-11
	2.9.1	Concept	2-11
	2.9.2	Process	2-11
	2.9.3	Implementation	2-11
	2.9.4	Performance Evaluation	2-11
	2.9.5	Pros of Bidirectional Search	2-12
	2.9.6	Cons of Bidirectional Search	2-12
2.10	Compar	ing Different Techniques	2-12
	2.10.1	Difference between BFS and DFS	2-12
2.11	Informe	ed Search Techniques	2-13
2.12	Heuristic Function		2-14
	2.12.1	Example of 8-puzzle Problem	2-15
	2.12.2	Example of Block World Problem	2-15
	2.12.3	Properties of Good Heuristic Function	2-17
2.13	Best Firs	st Search	2-17
	2.13.1	Concept	2-17
	2.13.2	Implementation	2-18
	2.13.3	Algorithm: Best First Search	2-18
	2.13.4	Performance Measures for Best First Search	2-19
	2.13.5	Greedy Best First Search	2-19
	2.13.6	Properties of Greedy Best-first Search	2-20
2.14	A* Searc	ch	2-20
	2.14.1	Concept	2-20
	2.14.2	Implementation	2-20
	2.14.3	Algorithm (A*)	2-21
	2.14.4	Behaviour of A* Algorithm	2-22
	2.14.5	Admissibility of A*	2-23
	2.14.6	Monotonicity	2-24
	2.14.7	Properties of A*	2-24
	2.14.8	Example : 8 Puzzle Problem using A* Algorithm	2-24

	2.14.9	Caparison among Best First Search, A* search and Greedy Best First Search	2-27
2.15	Memory	Bounded Heuristic Searches	2-27
	2.15.1	Iterative Deepening A* (IDA*) {Self Study Topics}	2-27
	2.15.2	Simplified Memory-Bounded A* (SMA*) {Self Study Topic}	
	2.15.3	Advantages of SMA* over A* and IDA*	2-31
	2.15.4	Limitation of SMA*	2-31
2.16	Local Sea	arch Algorithms and Optimization Problems	2-31
	2.16.1	Hill Climbing	2-31
	2.16.1(A	ı) Simple Hill Climbing	2-32
	2.16.1(B	S) Steepest Ascent Hill Climbing	2-33
	2.16.1(C	C) Limitations of Hill Climbing	2-33
	2.16.1(D	o) Solutions on Problems in Hill Climbing	2-35
	2.16.2	Simulated Annealing	2-35
	2.16.2(A	a) Comparing Simulated Annealing with Hill Climbing	2-36
	2.16.3	Local Beam Search	2-37
2.17	Crypto-A	Arithmetic Problem	2-39
2.18	Constrai	nt Satisfaction Problem	2-41
	2.18.1	Graph Coloring	2-42
	2.18.2	Varieties of CSPs	2-43
	2.18.3	Varieties of Constraints	2-43
	2.18.4	Backtracking in CSPs	2-43
	2.18.5	Improving Backtracking Efficiency	2-44
	2.18.6	Water Jug	2-47
2.19	Adversa	rial Search	2-49
2.20	Environr	ment Types	2-49
2.21	AI Game	- Features	2-49
	2.21.1	Zero Sum Game	2-50
	2.21.2	Non-Zero Sum Game	2-50
	2.21.2(A	ı) Positive Sum Game	2-50
	2.21.2(B	3) Negative Sum Game	2-51
2.22	Relevant	t Aspects of AI Game	2-51
2.23	Game Pla	aying	2-51
	2.23.1	Type of Games	2-52
		u) Chess	
	2.23.1(B	3) Checkers	2-54
	2.23.2	What is Game Tree ?	2-54

AI :	ana DS - 1	. (MU) 5	Table of Contents
2.24	MiniMax	Algorithm	2-56
	2.24.1	Minimax Algorithm	2-56
	2.24.2	Properties of Minimax Algorithm	2-59
2.25	Alpha Be	eta Pruning	2-59
	2.25.1	Example of α - β pruning	2-62
	2.25.2	Properties of α - β	2-63
Chapt	er 3: Ki	NOWLEDGE REPRESENTATION USING FIRST ORDER LOGIC	3-1 to 3-60
Syllab	us : Know	rledge and Reasoning : A Knowledge Based Agent, WUMPUS WORLD Environment	, Propositional Logic, First

Order Predicate Logic, Forward and Backward Chaining, Resolution. Planning as an application of knowledge based agent. Concepts of Partial Order planning, Hierarchical Planning and Conditional Planning. Self-Learning Topics: Representing real world problems as planning problems.

3-4
3-5
3-6
3-9
3-9
3-12
3-12
3-13
3-13
3-13
3-14
3-16
3-16
3-17
3-17
3-17
3-18
3-19
3-20
3-20
3-21
3-23

3.10 Unification and Lifting	3-23 3-24 3-26
3.10.2 Lifting	3-24
	3-26
3.11 Resolution	3-26
3.11.1 The Resolution Procedure	
3.11.2 Conversion from FOL Clausal Normal Form (CNF)	3-27
3.11.3 Facts Representation	3-27
3.11.4 Example	3-28
3.12 Planning as an Application of Knowledge Based Agent	3-35
3.12.1 Simple Planning Agent	3-35
3.13 Planning Problem	3-36
3.13.1 Why Planning?	3-37
3.13.1(A) Problem Solving and Planning	3-37
3.14 Goal of Planning	3-37
3.14.1 Major Approaches	3-38
3.15 Planning Graphs	3-39
3.16 Planning as State-Space Search	3-41
3.16.1 Example of State Space Search	3-42
3.17 Classification of Planning with State Space Search	3-44
3.18 Progression Planners	3-44
3.19 Regression Planners	3-45
3.19.1 Heuristics for State-Space Search	3-46
3.20 Total Order Planning (TOP)	3-46
3.21 Partial Order Planning	3-47
3.21.1 POP as a Search Problem	3-47
3.21.2 Consistent Plan is a Solution for POP Problem	3-48
3.22 Hierarchical Planning	3-48
3.22.1 POP One Level Planner	3-49
3.22.2 Hierarchy of Actions	3-50
3.22.3 Planner	3-50
3.23 Planning Languages	3-52
3.23.1 Example of Block World Puzzle	3-53
3.23.2 Example of the Spare Tire Problem	3-55
3.24 Self Learning Topics : Representing Real World Problems as Planning	3-56
3.25 Multi-Agent Planning	3-57
3.26 Conditional Planning	

Chapter 4: INTRODUCTION TO DS

4-1 to 4-10

Syllabus: Introduction and Evolution of Data Science, Data Science Vs. Business Analytics Vs. Big Data, Data Analytics, Lifecycle, Roles in Data Science Projects. Self-Learning Topics: Applications and Case Studies of Data Science in various Industries.

4.1	introducti	ion of Data Science	4-]
4.2	Evolution	of Data Science	4-1
4.3	Data Scier	nce Vs. Business Analytics Vs. Big Data	4-3
	4.3.1	Data Mining vs Data Science	.4-3
4.4	Data Anal	ytics	4-4
4.5	Lifecycle		4-4
	4.5.1	Phases of Data Analytics Lifecycle	.4-4
4.6	Roles in D	ata Science Projects	4-6
4.7	Application	ons of Data Science	4-8
4.8	Case Stud	ies of Data Science in various Industries	4-9

Chapter 5: EXPLORATORY DATA ANALYSIS

5-1 to 5-26

Syllabus: Introduction to exploratory data analysis, Typical data formats. Types of EDA, Graphical/Non graphical Methods, Univariate/multivariate methods Correlation and covariance, Degree of freedom, Statistical Methods for Evaluation including ANOVA.

Self-Learning Topics: Implementation of graphical EDA methods.

5.1	Introduct	ion to Exploratory Data	5-1
	5.1.1	Typical Data Formats	5-2
	5.1.1(A)	Visualising Distributions	5-2
	5.1.2	Typical Values	5-4
	5.1.3	Unusual Values	
	5.1.4	Missing Values	5-7
5.2	Types of l	EDA	5-7
	5.2.1	Types Of Exploratory Data Analysis	5-7
	5.2.2	Tools Required For Exploratory Data Analysis	5-9
5.3	Graphical	/Non Graphical Methods	5-9
	5.3.1	Multivariate Non-Graphical EDA	5-10
	5.3.2	Univariate graphical EDA	5-10
	5.3.3	Correlation and Covariance	
	5.3.4	A categorical and Continuous Variable	
	5.3.5	Two Categorical Variables	5-16
5.3.6	Two Cont	inuous Variables	5-17
5.3.7	Covariano	ee and Correlation Matrices	5-20

5.4	Degree of	Freedom	.5-21
5.5	Statistical	Methods for Evaluation Including ANOVA	.5-21
	5.5.1	Simplest Form and Basic Terms of ANOVA Tests	.5-21
	5.5.2	F Test	.5-22
5.6	Self-Learn	ning Topics : Implementation of graphical EDA methods	.5-24
	5.6.1	Box plots	.5-24
	5.6.2	Histograms	.5-24
	5.6.3	Scatter Plots	.5-24
	5.6.4	Normal probability plots	.5-26

Chapter 6: INTRODUCTION TO MACHINE LEARNING

6-1 to 6-17

Syllabus: Introduction to Machine Learning, Types of Machine Learning: Supervised (Logistic Regression, Decision Tree, Support Vector Machine) and Unsupervised (K Means Clustering, Hierarchical Clustering, Association Rules) Issues in Machine learning, Application of Machine Learning Steps in developing a Machine Learning Application.

Self-Learning Topics: Real world case studies on machine learning

6.1	Introduct	ion to Machine Learning	. 6-1
6.2	Types of I	Machine Learning	. 6-1
	6.2.1	Supervised Learning	6-2
	6.2.1(A)	Logistic Regression	6-2
	6.2.1(B)	Decision Tree	
	6.2.1(C)	Support Vector Machine	6-4
	6.2.2	Unsupervised Learning	6-5
	6.2.2(A)	K Means Clustering	6-6
	6.2.2(B)	Hierarchical Clustering	
	6.2.2(C)	Association Rules	6-9
6.3	Issues In	Machine Learning ϵ	5-10
	6.3.1	Application of Machine Learning	5-12
	6.3.2	Steps in developing a Machine Learning Application	5-15
6.4	Self-Learı	ning Topics : Real world case studies on machine learning	5-16